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SAMPLE

Gaussian Noise

1  Overview

1.1 Location $(AMDAPPDKSAMPLESROOT)\samples\opencl\cpp_cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample. 

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86\ for 32-
bit builds, and $(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s). 

1. GaussianNoise
This generates Gaussian noise in the input image.

2. GaussianNoise -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are 
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of 
available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of 
available devices).

-v --version AMD APP SDK version string.

-i --iterations Number of iterations for kernel execution.

-f --factor Noise factor.
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2  Introduction
Gaussian noise is statistical noise that has a probability density function of the normal distribution 

(also known as Gaussian distribution). The values that the noise can take on are Gaussian-distrib-

uted. 

This sample takes an input image and generates a Gaussian deviation by using the pixel value 
as a seed. This deviation is then added to all the components of the pixel. 

3  Implementation Details
Each thread generates two uniform random numbers in the range (0, 1), using a linear 
congruential generator function.

A minimal standard linear congruential generator proposed by Park and Miller (see reference [1])

is:

Ij + 1 = a Ij mod m

where a = 16807 (75), and m = 231 – 1.

To implement this, we use Schrage’s method (see reference [2]), which is based on an 
approximate factorization of m.

m = aq + r, that is: q = [m/a], r = m mod a

We then apply a shuffling algorithm by Bays and Durham, as described in Knuth (see reference 
[3]), to remove low-order serial correlations.

A Box-Muller transform is then applied to obtain the numbers in the Gaussian distribution. This 
takes two uniform samples, u0 and u1, and transforms them into two Gaussian distributed 
samples, r0 and r1, using the following relations.

This method, which is the simple version of this transform, is suitable for GPUs because it is 
mathematically intensive and free of loops and branches. 

Another version of this transform, called the Polar form, relies on looping, which is less efficient 
on GPUs. The Polar form uses rejection to discard numbers, as shown in the following code 
sample.
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For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

Using this form results in reduced performance compared to the simple (Box-Muller) version.
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