
Gaussian Noise 1 of 3

SAMPLE

Gaussian Noise

1 Overview

1.1 Location $(AMDAPPDKSAMPLESROOT)\samples\opencl\cpp_cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86\ for 32-
bit builds, and $(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. GaussianNoise
This generates Gaussian noise in the input image.

2. GaussianNoise -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of
available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-v --version AMD APP SDK version string.

-i --iterations Number of iterations for kernel execution.

-f --factor Noise factor.

2 of 3 Gaussian Noise

2 Introduction
Gaussian noise is statistical noise that has a probability density function of the normal distribution

(also known as Gaussian distribution). The values that the noise can take on are Gaussian-distrib-

uted.

This sample takes an input image and generates a Gaussian deviation by using the pixel value
as a seed. This deviation is then added to all the components of the pixel.

3 Implementation Details
Each thread generates two uniform random numbers in the range (0, 1), using a linear
congruential generator function.

A minimal standard linear congruential generator proposed by Park and Miller (see reference [1])

is:

Ij + 1 = a Ij mod m

where a = 16807 (75), and m = 231 – 1.

To implement this, we use Schrage’s method (see reference [2]), which is based on an
approximate factorization of m.

m = aq + r, that is: q = [m/a], r = m mod a

We then apply a shuffling algorithm by Bays and Durham, as described in Knuth (see reference
[3]), to remove low-order serial correlations.

A Box-Muller transform is then applied to obtain the numbers in the Gaussian distribution. This
takes two uniform samples, u0 and u1, and transforms them into two Gaussian distributed
samples, r0 and r1, using the following relations.

This method, which is the simple version of this transform, is suitable for GPUs because it is
mathematically intensive and free of loops and branches.

Another version of this transform, called the Polar form, relies on looping, which is less efficient
on GPUs. The Polar form uses rejection to discard numbers, as shown in the following code
sample.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

3 of 3 Gaussian Noise

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

Using this form results in reduced performance compared to the simple (Box-Muller) version.

4 References
1. Park, S.K., and Miller, K.W 1988, Communications of the ACM, vol. 31, pp., 1192-1201.

2. Schrage, L. 1979, ACM transactions on Mathematical Software, vol. 5, pp. 132-138.

3. Knuth, D.E, 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The art of computer
programming, 3.2-3.3.

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Gaussian Noise
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details
	4 References

