
TransferOverlap 1 of 4

SAMPLE

TransferOverlap

1 Overview
Note that this sample is essentially the same as the TransferOverlapCPP sample, except that it
uses the OpenCL C API; the TransferOverlapCPP sample uses C++ bindings for the OpenCL
API.

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. TransferOverlap
This runs the program with the following default options: -i 1, -k 10, -x 1048576 (1MB), -s 0,
-w 7, -I 0.

2. TransferOverlap -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are cpu or
gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of available
devices).

--flags Specify compiler flags to build the kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of available
platform).

-v --version AMD APP SDK version string.

2 of 4 TransferOverlap

2 Introduction
This sample shows how to overlap the CL buffer transfer with running a device kernel; this is
done using a zero copy CL_MEM_USE_PERSISTENT_MEM_AMD buffer and an in-order queue.

The CPU performs the data transfer (instead of the DMA engine or the GPU), freeing the GPU
to perform compute.

The GPU kernel writes the result directly into host memory using another zero copy buffer of type
CL_MEM_ALLOC_HOST_PTR.

The AMD APP SDK and driver must support the zero copy feature; otherwise the zero copy buffer
allocation can fail or default to a non-zero copy buffer.

3 Overlap Using Zero Copy
The definition of a zero copy buffer is that its contents are not copied unless explicitly requested
by the user (for example by using clCopyBuffers).

A CL_MEM_USE_PERSISTENT_MEM_AMD buffer is a zero copy buffer located on the device. The host
can directly access it by using memset() or memcpy(). This is independent of GPU kernel
execution. Calls to cl*Map*() and cl*Unmap*() for a zero copy buffer are typically very low cost
since they do not result in any data transfer.

The code uses a double buffering set-up. The basic execution sequence is as follows:

map buffer 1
while(..)
{
memset to buffer 1, overlapping with kernel 2

 unmap buffer 1

 map buffer 2
 launch kernel for buffer 1

 memset to buffer 2, overlapping with kernel 1
 unmap buffer 2

 map buffer 1
 launch kernel for buffer 2

-x --size Size in bytes.

-i --iterations Number of timing loops.

-s --skip Skip the first n interations for average.

-k --kernelLoops Numberof loops in the kernel.

-w -wavefronts Number of wavefronts per compute unit.

-I --inMemFlag Memory flags for the input buffer.
0 CL_MEM_READ_ONLY
1 CL_MEM_WRITE_ONLY
2 CL_MEM_READ_WRITE
3 CL_MEM_ALLOC_HOST_PTR
4 CL_MEM_USE_PERSISTENT_MEM_AMD

-n --noOverlap Do not overlap memset() with kernel.

-l --log Prints complete timing log.

Short Form Long Form Description

TransferOverlap 3 of 4

}

It is important to initiate the map of one buffer before the kernel is launched on the other buffer;
otherwise, the map finishes after the preceding kernel is completed, as required by in-order
queue semantics.

4 Implementation Details
The overall test time and average loop time are printed out at the end of the test. To discount
one-time startup costs (lazy allocation, etc.), the first iterations of the test loop are not included
in the average overall runs.

1. Run TransferOverlap -I 0 -n. This uses normal device buffers, and the kernel calls are
forced to finish before any other CL calls. All of memset, the DMA transfer, and the kernel are
executed serially.

2. Run TransferOverlap -I 0. Using normal device buffers, the memset operation overlaps
with the kernel execution, but the DMA still runs serially with the kernel.

3. Running TransferOverlap without options overlaps a memset into a
CL_MEM_USE_PERSISTENT_MEM_AMD buffer with the kernel computation. If the kernel runtime
is equal to the memset runtime, almost complete overlap can be achieved.

The kernel runtime can be tuned on a given platform using the -k <n> command line option.
Use TransferOverlap -n -k <n> to obtain the actual front-to-back kernel execution time, and
compare it to the time reported for memset() into the CL_MEM_USE_PERSISTENT_MEM_AMD buffer.

5 Example
The following is an example with actual numbers, using an AMD Radeon™ HD 5870 graphics
card.

• memset() of 10 MB buffer in host memory: .001s at 10 GB/s

• DMA transfer of 10 MB buffer: .002 s at 5 Gb/s

• memset() of 10 MB buffer of
type CL_MEM_USE_PERSISTENT_MEM_AMD: .0033 s at 3 GB/s

• Kernel run time (tuned for optimal overlap): .0033 s

1. Serial case: memset() into host buffer + DMA +kernel, all run serially.

Total time = .001 s + .002 s + .0033 s = .0063 s

2. Partly overlapped case, memset() and kernel overlap, DMA is serial:

Total time = max(.001 s, .0033 s) + .002 s = .0053 s

3. Fully overlapped case, memset() into persistent and kernel overlap, no DMA:

Total time = max(.0033 s, .0033 s) = .0033 s

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

4 of 4 TransferOverlap

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	TransferOverlap
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Overlap Using Zero Copy
	4 Implementation Details
	5 Example

