
Monte Carlo Simulation for Asian Option Pricing - Multi-GPU 1 of 5

SAMPLE

Monte Carlo Simulation for
Asian Option Pricing - Multi-GPU

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. MonteCarloAsianMultiGPU
Runs with the default option x = 128.

2. MonteCarloAsianMultiGPU -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values
are cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build the kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number
of available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-v --version AMD APP SDK version string.

-c --steps Steps of the Monte Carlo simulation.

-i --iterations Number of iterations for kernel execution.

-m --maturity Maturity (default = 1).

2 of 5 Monte Carlo Simulation for Asian Option Pricing - Multi-GPU

2 Introduction
The most common definition of an option (see reference [1]) is an agreement between two
parties, the option seller and the option buyer, whereby the option buyer is granted a right (but
not an obligation), secured by the option seller, to carry out some operation (or exercise the
option) at some moment in the future. The predetermined price is referred to as the strike price;
the future date is called the expiration date.

There are two basic options types:

• A call option grants its holder the right to buy the underlying asset at a strike price at some
moment in the future.

• A put option gives its holder the right to sell the underlying asset at a strike price at some
moment in the future.

There are several types of options, mostly depending on when the option can be exercised.

European options can be exercised only on the expiration date. American-style options are more
flexible: they can be exercised any time up to, and including, the expiration date; as such, they
are generally priced at least as high as corresponding European options. Other types of options
are path-dependent, or have multiple exercise dates (Asian, Bermudian). For a call option, the
profit made at the exercise date is the difference between the price of the asset on that date and
the strike price, minus the option price paid. For a put option, the profit made at the exercise date
is the difference between the strike price and the price of the asset on that date, minus the option
price paid. The price of the asset at expiration date and the strike price, therefore, strongly
influence how much one is willing to pay for an option.

Other important factors in the price of an option are:

• The time to the expiration date, T: Longer periods imply a wider range of possible values for
the underlying asset on the expiration date; thus, there is more uncertainty about the value of
the option.

• The riskless rate of return, r, which is the annual interest rate of bonds or other “risk-free”
investments: Any amount P of dollars is guaranteed to be worth P • erT dollars T years from
now if placed today in one of these investments. In other words, if an asset is worth P dollars
T years from now, it is worth P • e-rT today.

3 Monte Carlo simulation for Asian Option
Monte Carlo analysis (see reference [1]) is a cornerstone for implementing financial models.
These simulations have many advantages, including the ease of implementation, as well as the
applicability to multi-dimensional problems commonly encountered in finance. Option pricing can
be represented as expectations. An example is an Asian Option Call, which is a financial contract

-P --initPrice Inital price (default = 50).

-s --strikePrice Strike price (default = 55)

-r --interest Interest rate (default = 0.06)

Short Form Long Form Description

Monte Carlo Simulation for Asian Option Pricing - Multi-GPU 3 of 5

dependent on the average security price over discrete dates in the future. The assent price at
some time, t, in the future follows the classic Black-Scholes model as follows.

Equation 1 St = S0 e(r – 0.5 σ) t + σWt

Where r is the risk-free rate of return, σ is volatility of the asset price, and dWt is the increment
of standard Brownian motion. The price of this option is a function of the strike price, K, and the
option maturity, T, shown as follows

Equation 2 P (T, K) = e-rT {max (Sa - K, 0) | S0 = s0 }

where the average asset price is:

Equation 3

The combination of these equations does not have a closed-form solution. We use a Monte Carlo
simulation to solve this pricing problem. However, for risk management, hedging, and stress
testing of a portfolio, the price-sensitivity as a function of changes to model inputs (greeks, as
they are commonly known) becomes quite valuable. One greek of interest is vega, the option-
price sensitivity to changes in the securities volatility, which is:

Equation 4

The price and vega calculation using Monte Carlo techniques is very time-consuming for several
reasons. For simulation accuracy, many Brownian motion trajectories are used for price
determination. For each option simulation, there are several contract dates during the option
maturity; monthly dates for an annual contract. Also, an accurate picture of price volatility is
achieved by rerunning the simulation with many different values for the volatility, σ. The option
trader faced with minimizing risk to their client-base and portfolio may want to have this price and
volatility analysis before making trades or in post-closing analysis. For very large, multi-
commodity portfolios, analysts frequently wait hours for model simulations. This affects their
ability to respond quicklly to dynamic market situations or to complete a risk analysis before the
next day of trading.

4 Implementation Details
Each work-item calculates the vector of four samples of price and vega from given vectors of
size four of the strike price: stock price, interest, maturity and sigma. The final value of the price
and vega are calculated from all the samples (1024) of price and vega on the host side. See
reference [1] for more details on how to calculate the final price and vega for a given sigma.

4.1 Asynchronous Data Transfer

Data transfers from host to GPU and GPU to host are the major bottlenecks in any GPGPU
application.

OpenCL supports data transfer and kernel execution simultaneously using DMA. Transfer overlap
has been implemented in this application using the following strategy.

Sa = ΣSti
i=1

n

vega = dP(T, K)
dσ

4 of 5 Monte Carlo Simulation for Asian Option Pricing - Multi-GPU

Each step is independent of the other step. Consider two steps: step0 and step1.

1. Transfer inputs of step0 to GPU.

2. Start the transfer of inputs for step1 to GPU.

3. Start the execution of the kernel of step0. Here, kernel execution in step0 and input data
transfer of step1 overlap.

4. Wait for kernel execution of step0 to complete.

5. Wait for the completion of input data transfer of step0 to GPU.

6. Start the data transfer from GPU to host (output of the step0).

7. Start the kernel execution of step1. Here, data transfer in the above step and kernel
executions of step1 are overlap.

8. Wait for the output data transfer of input0 to complete.

9. Wait for the kernel execution of step1 to complete.

10. Transfer output data of step1 from GPU to host.

4.2 MultiGPU Implementation

Calculation of price values and price derivatives are independent in each step. So, we can divide
the number of steps among all the available GPUs.

The work load is distributed among the devices by calculating peak GFlops of each device.

Peak GFlops of a device = (Number of Compute Units *
Number of Stream Processors per Compute Unit *
Number of Processing Elements per stream processor *
Max Clock Frequency *
Number of floating Point operations per cycle per processing element) / 1000.

We distribute the steps (in simulation process) among the devices by using the following formula.

Number of steps to be executed on a specific device = Ratio of the device *
Total number of steps.

Where Ratio of the device = Peak GFlops of the device / (Total GFlops of all the devices).

5 Recommended Input Option Settings
For best performance, enter the following on the command line: -c 256 -i 5 -q -t

6 References
1. http://www.interactivesupercomputing.com/success/pdf/caseStudy_financialmodeling.pdf

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

5 of 5 Monte Carlo Simulation for Asian Option Pricing - Multi-GPU

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Monte Carlo Simulation for Asian Option Pricing - Multi-GPU
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Monte Carlo simulation for Asian Option
	4 Implementation Details
	4.1 Asynchronous Data Transfer
	4.2 MultiGPU Implementation

	5 Recommended Input Option Settings
	6 References

