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SAMPLE

MemoryModel

1  Overview

1.1  Location $(ATISTREAMSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You must first compile the sample. 

1. Use the command line to change to the directory where the executable is located. The 
precompiled sample executable is at: 
$(AISTTEAMSDKSAMPLESROOT)\samples\opencl\bin\x86 for 32-bit builds, and 
$(ATISTREAMSDKSAMPLESROOT)\samples\opencl\bin\x86-64 for 64-bit builds. 

2. Type the command MemoryModel initializes input from 1 to 256. 

2  Introduction
This is a simple sample used to teach developers the concept and use of the four distinct memory 
regions in OpenCL.

3  Implementation Details

3.1  Background Work-item(s) executing a kernel have access to four distinct memory regions: Global Memory, 
Local Memory, Constant Memory, and Private Memory.

1. The global memory (__global o) is the memory region that is accessible by all the work-
items. Reads and writes can be cached, depending on the devices.

2. The local memory (__local) has local visibility to a work-group. This can be used to share 
data between work-items in that work-group.

3. The constant memory (__constant) is a region in the global memory; it remains constant 
over the execution of a kernel.

4. The private memory (__private) is a memory region private to a work-item; it is not visible 
to another work-item. Any variable declared without an address space qualifier is private by 
default.

3.2  OpenCL
Kernel

#define GROUP_SIZE 64

__constant int mask[] = 
{

1, -1, 2, -2
};
__kernel void MemoryModel(__global int *outputbuffer,__global int *inputbuffer)
{  
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    __local int localBuffer[GROUP_SIZE];
__private int result=0;
__private size_t group_id=get_group_id(0);

    __private size_t item_id=get_local_id(0);
    __private size_t gid = get_global_id(0);

    // Each workitem within a work group initialize one element of the local buffer
    __private int input_data = inputbuffer[gid];
    localBuffer[item_id]= input_data;
    // Synchronize the local memory
    barrier(CLK_LOCAL_MEM_FENCE);

    // add 4 elements from the local buffer
    // and store the result into a private variable
    for (int i = 0; i < 4; i++) {
      __private int t = localBuffer[(item_id+i)%GROUP_SIZE];
      result += t;
    }
    // multiply the partial result with a value from the constant memory
    result *= mask[group_id%4];

    // store the result into a buffer
outputbuffer[gid]= result;

}

This sample uses a group size of 64.

The kernel starts by initializing the local array localBuffer with data from the global memory 
inputbuffer..

localBuffer[item_id]=inputbuffer[gid];

Note that gid is a private variable that holds the global ID unique to a work-item. For example, 
gid==0 for work-item 0, gid==1 for work-item 1, etc. The variable item_id is similar, but holds 
the local id.  

The work-group has 64 work-items; all 64 slots of localBuffer are initialized in parallel.

Each work-item of this kernel starts by initializing the local memory using data from the global 
memory. This sample uses a group size of 64. In this case, one work-item initializes one slot of 
localBuffer in parallel.

A memory barrier is needed to ensure that the changes to local memory become visible to all 
the work-items of that work-group.

The loop that follows shows that each work-item loads four consecutive values from the local 
memory, then add them together. The partial result is different for every work-item, so it is being 
stored in a private variable.

The partial result then is multiplied by a value from the constant memory. 

Finally, the result is stored into another global array outputbuffer, which can be transferred back 
to the host or used as input by another kernel.
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For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

4  References
1. OpenCL Specification v1.2, Memory Model (section 3.3), Address Space Qualifiers (section 

6.5). 
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