
MemoryModel 1 of 3

SAMPLE

MemoryModel

1 Overview

1.1 Location $(ATISTREAMSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You must first compile the sample.

1. Use the command line to change to the directory where the executable is located. The
precompiled sample executable is at:
$(AISTTEAMSDKSAMPLESROOT)\samples\opencl\bin\x86 for 32-bit builds, and
$(ATISTREAMSDKSAMPLESROOT)\samples\opencl\bin\x86-64 for 64-bit builds.

2. Type the command MemoryModel initializes input from 1 to 256.

2 Introduction
This is a simple sample used to teach developers the concept and use of the four distinct memory
regions in OpenCL.

3 Implementation Details

3.1 Background Work-item(s) executing a kernel have access to four distinct memory regions: Global Memory,
Local Memory, Constant Memory, and Private Memory.

1. The global memory (__global o) is the memory region that is accessible by all the work-
items. Reads and writes can be cached, depending on the devices.

2. The local memory (__local) has local visibility to a work-group. This can be used to share
data between work-items in that work-group.

3. The constant memory (__constant) is a region in the global memory; it remains constant
over the execution of a kernel.

4. The private memory (__private) is a memory region private to a work-item; it is not visible
to another work-item. Any variable declared without an address space qualifier is private by
default.

3.2 OpenCL
Kernel

#define GROUP_SIZE 64

__constant int mask[] =
{

1, -1, 2, -2
};
__kernel void MemoryModel(__global int *outputbuffer,__global int *inputbuffer)
{

2 of 3 MemoryModel

 __local int localBuffer[GROUP_SIZE];
__private int result=0;
__private size_t group_id=get_group_id(0);

 __private size_t item_id=get_local_id(0);
 __private size_t gid = get_global_id(0);

 // Each workitem within a work group initialize one element of the local buffer
 __private int input_data = inputbuffer[gid];
 localBuffer[item_id]= input_data;
 // Synchronize the local memory
 barrier(CLK_LOCAL_MEM_FENCE);

 // add 4 elements from the local buffer
 // and store the result into a private variable
 for (int i = 0; i < 4; i++) {
 __private int t = localBuffer[(item_id+i)%GROUP_SIZE];
 result += t;
 }
 // multiply the partial result with a value from the constant memory
 result *= mask[group_id%4];

 // store the result into a buffer
outputbuffer[gid]= result;

}

This sample uses a group size of 64.

The kernel starts by initializing the local array localBuffer with data from the global memory
inputbuffer..

localBuffer[item_id]=inputbuffer[gid];

Note that gid is a private variable that holds the global ID unique to a work-item. For example,
gid==0 for work-item 0, gid==1 for work-item 1, etc. The variable item_id is similar, but holds
the local id.

The work-group has 64 work-items; all 64 slots of localBuffer are initialized in parallel.

Each work-item of this kernel starts by initializing the local memory using data from the global
memory. This sample uses a group size of 64. In this case, one work-item initializes one slot of
localBuffer in parallel.

A memory barrier is needed to ensure that the changes to local memory become visible to all
the work-items of that work-group.

The loop that follows shows that each work-item loads four consecutive values from the local
memory, then add them together. The partial result is different for every work-item, so it is being
stored in a private variable.

The partial result then is multiplied by a value from the constant memory.

Finally, the result is stored into another global array outputbuffer, which can be transferred back
to the host or used as input by another kernel.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

3 of 3 MemoryModel

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

4 References
1. OpenCL Specification v1.2, Memory Model (section 3.3), Address Space Qualifiers (section

6.5).

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	MemoryModel
	1 Overview
	2 Introduction
	3 Implementation Details
	4 References

