
Hello World 1 of 3

SAMPLE

Hello World

1 Overview

1.1 Location $(AMDAPPDKSAMPLESROOT)\samples\opencl\cl\HelloWorld\

where AMDAPPDKSAMPLESROOT is an environment variable pointing to the HelloWorld path in the
AMD APP SDK samples.

1.2 How to Run 1. Before running the sample, install the latest AMD GPU driver and the latest AMD APP SDK.

2. Import the necessary header files into the project. The header files are located in
$(AMDAPPSDKROOT)\include, where AMDAPPSDKROOT is an evironment variable pointing to the
installation path of the AMD APP SDK.

3. Compile the sample. Use the command line to change to the directory where the executable
is located. The pre-compiled sample executable is at
$(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86\ for 32-bit builds, and
$(AMDAPPDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

2 Introduction
This is a stand-alone OpenCL sample, independent of any utility libraries in the SDK. It is an
easy sample for a new user to start coding and learning OpenCL.

HelloWorld is an OpenCL kernel that modifies the input string GdkknVnqkc. Each kernel thread
receives one character of the string and increments the assigned output by 1. For example: work-
item 0 gets G, and G plus 1 is H in ASCII. So, the string changes to “HelloWorld” after kernel
execution.

3 Implementation Details
The following steps guide you through the process of writing a simple OpenCL program.

Step 1. Get platform.

Query the available platforms, and choose an appropriate one. For information about
the platforms, used clGetPlatformIDs and clGetPlatformInfo.

Step 2. Query devices.

Use clGetDeviceIDs to query the platform, and choose the first GPU device. If there
is no GPU, use the CPU.

2 of 3 Hello World

Step 3. Create context.

Use clCreateContext to create a context using the first device. This can be a GPU or
CPU, depending on the available devices on the system.

Step 4. Create command queue.

Use clCreateCommandQueue to create a command queue on the context for the device.

Step 5. Create program.

Use clCreateProgramWithSource to create the program that uses the kernel file.

Step 6. Build program.

Use clBuildProgram to build the program.

Step 7. Create memory objects.

Define the initial input and output buffers for the host, and create memory objects for
the kernel. Use clCreateBuffer to create cl_mem objects.

Step 8. Create kernel object.

Use clCreateKernel to create a kernel for the device.

Step 9. Set kernel arguments.

Use clSetKernelArg to set arguments for the kernel.

Step 10. Run the kernel.

Use clEnqueueNDRangeKernel to run the kernel.

Step 11. Read the output back to host memory.

Use clEnqueueReadBuffer to read the results of the executed kernel back to host buffer.

Step 12. Release the resources used by OpenCL.

a. Using API clReleaseKernel to release kernel.

b. Using API clReleaseProgram to release program.

c. Using API clReleaseMemObject to release buffer.

d. Using API clReleaseCommandQueue to release command queue.

e. Using API clReleaseContext to release context.

Use free or delete to free the resources used by the host.

If successful, the errcode_ret is set to CL_SUCCESS; otherwise, a different error codes is
returned.

For more information about the API functions and error codes, see the latest OpenCL
Specification.

4 OpenCL Kernel
__kernel void helloworld(__global char* in, __global char* out);

The __kernel denotes that the function is a kernel function. It has two arguments: the inputBuffer
is passed as an argument to in, and the outputBuffer is passed as an argument to out.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

3 of 3 Hello World

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

int num = get_global_id(0);

This API provides the work-item id in the global execution space. For this kernel, the execution
space is the same size as MEM_SIZE(10). Thus, each instance of the kernel that is executed has
associated with it an element in *in and *out.

out[num] = in[num] + 1;

Depending on the threadid(num), each thread gets an element from in, and increments it by
1, then passes it to out.

5 References
1. OpenCL Specification, v. 1.2, available at http://www.khronos.org/opencl/ .

http://khronos.org/registry/cl/specs
http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Hello World
	1 Overview
	2 Introduction
	3 Implementation Details
	4 OpenCL Kernel
	5 References

