
Floyd-Warshall 1 of 4

SAMPLE

Floyd-Warshall

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. FloydWarshall
Calculates the shortest distance between each pair of 64 nodes of a graph whose weights
are initialized randomly.

2. FloydWarshall -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build the kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of
available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-v --version AMD APP SDK version string.

-x --nodes Number of nodes.

-i --iterations Number of iterations for kernel execution.

2 of 4 Floyd-Warshall

2 Introduction
A graph is an essential tool to model and understand both natural and man-made phenomena.
Graphs are frequently encountered when solving problems such as Internet routing, supply-chain
networks, oil pipelining, electrical grids, VLSI fabrication, and social networks. The unifying
motivation for all such problems is the minimization of energy spent in moving material or
information from source to destination through an intervening network of entities. A commonly
occurring problem in graph theory is to find the shortest path between two entities. Before
elaborating the concept of a shortest path, we recall the formal definition of a graph as
understood in mathematics and computer science:

A graph is a collection of vertices and edges that maybe denoted as G(V,E), where
V = {V1, V2, …, Vn} is a set of vertices or nodes, and E = {e1, e2, …, em} is a set of edges,
where each edge is an unordered pair (ordered pair for directed graphs) of vertices. An edge
ei connecting the vertices Vp and Vq is denoted by (Vp, Vq).

Figure 1 shows a diagram of a graph with seven vertices and eight edges.

Figure 1 Graph G(V,E): V has Seven Vertices, and E has Eight Edges

3 Shortest Path
A weighted graph is a graph where every edge has a weight attached to it. The weight generally
signifies some “cost” or “distance” associated with that edge. The shortest path problem tries to

G(V,E)

V = { V1, V2, V3, V4, V5, V6, V7 }

E = { (V1,V2), (V1,V5), (V5,V3), (V5,V4),
(V5,V6), (V6,V7), (V7,V4), (V4,V3) }

Floyd-Warshall 3 of 4

find the path between a given pair of vertices that minimizes the sum of the weights of edges
encountered along that path. Shortest path problems can be formulated for a single source or a
single destination. A single-source shortest path problem finds the shortest path from a given
source vertex to all other vertices; a single-destination problem finds shortest paths from all
vertices to a specified one. Alternatively, we can find shortest paths from every vertex in a graph
to every other vertex. This is termed as the all pair shortest path problem and is the premise of
the Floyd-Warshall algorithm.

4 Adjacency Matrix
The adjacency matrix of a graph is a square matrix of dimensions n x n, where n is the number
of nodes in the graph. If P(nxn) is the adjacency matrix for graph G(V,E), then P(i,j) indicates the
weight of the edge from Vi to Vj. Figure 2 shows the graph in Figure 1 with each edge labeled
by a weight and the corresponding adjacency matrix.

Figure 2 Graph G(V,E) with Weights Attached to Each Edge (Left) and the
Corresponding Adjacency Matrix (Right)

Note that the weight between a pair of nodes is infinity (∞) if there is no edge between them.
Also note that zeroes appear along the diagonal. The weight of an edge from a node to itself is
zero because there is no cost in the traversal.

5 Floyd-Warshall Algorithm
The Floyd-Warshall algorithm computes the shortest path between each pair of nodes in a graph
(see reference [1]). It is a dynamic programming approach that iteratively refines the adjacency
matrix of the graph in question until each entry in the matrix reflects the shortest path between
the corresponding nodes. The main idea of the algorithm is as follows: Given the shortest path
between node Vi and Vj using V1 … Vk as intermediate nodes, find out the shortest path between
Vi and Vj using V1 … Vk+1 as intermediate nodes. This idea can be recursively formulated as:

V1

V2

V3

V4

V5

V6

V7

V1

09∞7∞∞∞
902∞∞∞∞
∞2041∞3
7∞408∞∞
∞∞180∞∞
∞∞∞∞∞05
∞∞3∞∞50

09∞7∞∞∞
902∞∞∞∞
∞2041∞3
7∞408∞∞
∞∞180∞∞
∞∞∞∞∞05
∞∞3∞∞50

3
5

1

8

2

7

9

4

V1

V2

V3

V4

V5

V6

V7

V1 V2 V3 V4 V5 V6 V7

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

4 of 4 Floyd-Warshall

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

ShortestPath(i, j, k) = min(ShortestPath(i, j, k-1) , ShortestPath(i, k, k-1) + ShortestPath(k, j, k-1))
ShortestPath(i, j, 0) = EdgeCost(i, j)

6 Implementation Details
In the OpenCL implementation of the Floyd-Warshall algorithm, we start with a randomly
generated adjacency matrix. It is a full matrix in the sense that there is an edge from every node
to every other node in the graph, which makes the graph a clique; also, it is a bidirectional graph.
The weights of self-loops are set to zero, so zeroes appear along the diagonal of the matrix.

The inputs to the OpenCL kernel are the path distance matrix, path matrix and the step (iteration)
number. The OpenCL kernel is invoked n times, where n is the number of nodes in the graph.
At the kth step, the kernel computes two numbers for every pair of nodes in the graph. The “direct
distance” between them is determined by looking up the path distance matrix, and the “indirect
distance” is computed by using node k as an intermediate node. If the shortest path between the
nodes after kth iteration passes through k, then the path matrix is updated with k. During the initial
pass, k=1, the direct distance is simply the weight of the edge between Vi and Vj. The indirect
distance using V1 as an intermediate node is the sum of distances between Vi, V1 and V1, Vj.
The smaller of the two distances is written back to the path distance matrix. If the shortest
distance between Vi and Vj passes through V1, the path matrix corresponding to the nodes Vi
and Vj is updated with V1. At the end of pass 1, the path distance matrix reflects the distances
between each pair of nodes in the graph using V1 as the intermediate node. This matrix is used
as the basis for the next pass, where the same computation is done with respect to V2. The final
path distance matrix reflects the lengths of the shortest paths between each pair of nodes in the
graph. The final path matrix reflects the intermediate nodes through which the shortest path
between any two pairs of nodes passes.

7 References
1. http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Floyd-Warshall
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	Figure 1 Graph G(V,E): V has Seven Vertices, and E has Eight Edges

	3 Shortest Path
	4 Adjacency Matrix
	Figure 2 Graph G(V,E) with Weights Attached to Each Edge (Left) and the Corresponding Adjacency Matrix (Right)

	5 Floyd-Warshall Algorithm
	6 Implementation Details
	7 References

