
Bitonic Sort 1 of 4

SAMPLE

Bitonic Sort

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. BitonicSort
This sorts an array of 64 randomly generated numbers.

2. BitonicSort -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build the kernel.

-p --platformId Select the platformId to be used (0 to N-1, where N is the number
of available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-v --version AMD APP SDK version string.

-x --length Length of the input array.

-s --sort Sort in descending/ascending order.

-i --iterations Number of iterations for kernel execution.

2 of 4 Bitonic Sort

2 Introduction
This sample sorts an arbitrary sequence of numbers using a bitonic sorting algorithm. It was
chosen because Bitonic Sort is well-suited for parallel architectures. It works by creating bitonic
sub-sequences in the original array, starting with sequences of size 4 and continuously merging
the sub-sequences to generate bigger bitonic subsequences. Finally, when the size of this
subsequence is the size of the array, it means the entire array is a bitonic sequence. Repeating
the steps makes the array a part of a bitonic subsequence that is twice the size of the array.
Thus, this part of the sub-sequence, the full array, is monotonic (sorted).

It has a constant computational complexity of O(N * log2(N) * log2(N)).

3 Implementation Details
Notes:

• For a detailed description of the algorithm, see references [1] and [2]. at the end of this
document.

• This implementation is slightly different from the algorithm described in [1].

• Note: For brevity, “increasing” denotes “non-decreasing,” and “decreasing” denotes “non-
increasing.”

• This algorithm works only for arrays with length of a power of 2. We assume the length of the
array is 2N.

For an array of length 2N, the sorting is done in N stages. The first stage has one pass; the
second has two passes; the third stage has three passes, and so on.

Every pass does length/2 comparisons; that is, 2(N-1). Let us call this value numComparisons.
The kernel compares once and writes out two values. So, for every pass there are
numComparisons invocations of the kernel; that is, numComparisons is the number of threads to
be invoked per pass.

3.1 Stages

The first stage converts the unsorted array into segments of length 2. The first pair of adjacent
segments form a bitonic sequence. The next pair (the third and fourth segments) form a bitonic
sequence, and, similarly, every pair of odd and successive even segments form a bitonic
sequence.

The second stage converts the sequence resulting from the first stage into a sequence where
the segments are of length 4. This means, the first pair of 4-element segments forms a bitonic
sequence, the second pair (third and fourth 4-element segments) form a bitonic sequence, and
so on. The size of the segment now is doubled. Every segment is monotonic; that is, either
uniformly increasing or uniformly decrasing.

Similarly, the result of the third stage is pairs of adjacent 8-element segments forming a bitonic
sequence. If the first stage is treated as converting length 1 segments into length 2 segments,
then every stage doubles the size of the segment. When the segment size is equal to the length
of the array, the result is a sorted array, because the other half of the bitonic sequence is outside

Bitonic Sort 3 of 4

the bounds of the array, and the first half is a monotonic sequence. This doubling of segment
size is done in multiple steps (passes) in each stage.

3.2 Detailing One Pass

Consider stage 2 of Table 2.

The first pass compares elements at a distance of 4 and swaps them depending on the sorting
direction for that block (eight successive elements in this pass). If the sort direction for that block
is increasing, the lesser value is kept to the left. For the next pass, the same thing is done, but
the block width now is 4. This is repeated until the block width in a pass is 2. At the end of every
pass, every block is made such that every element of the left half of a block is less than the
corresponding element of the right half of the same block (or greater than it, if the sort direction
for that block is decreasing order). The distance between the elements being compared is half
the width of the block. This is known as pairDistance.

The first stage inverts the direction of sorting between every successive pair of elements. In the
second stage, this inversion is done after two pairs of elements (four elements). This subsection
of the array, in which the direction of comparison is the same, is termed a sameDirectionBlock.
A sameDirectionBlock is measured in terms of the number of elements pairs. So, the first stage
has a sameDirectionBlockSize of 1; the second one has a sameDirectionBlockSize of 2; the third
4, and so on.

Table 2 illustrates the stages, passes and comparisons made in a bitonic sort, in increasing order,
of a 16-element array. The stages, passes, threads, and elements are numbered starting from 0.
In this table, 0<1 implies:

• The pass compares elements at indices 0 and 1.

• The pass compares to sort these two in increasing order.

• It ensures that it writes to these two locations in that order (swapping them if necessary).

Table 2 Bitonic Sort Stages, Passes, and Comparisons

PairDistance = 2(Stage – PassOfStage)
This is the distance between the pair of elements that are being compared in each
invocation/call of the thread.

Stage Pass of
Stage

Thread ID Pair
Distance

Block
Width

Same
Direction

Block Size0 1 2 3 4 5 6 7

0 0 0<1 2>3 4<5 6>7 8<9 10>11 12<13 14>15 1 2 1
1 0 0<2 1<3 4>6 5>7 8<10 9<11 12>14 13>15 2 4 2
1 1 0<1 2<3 4>5 6>7 8<9 10<11 12>13 14>15 1 2 2
2 0 0<4 1<5 2<6 3<7 8>12 9>13 10>14 11>15 4 8 4
2 1 0<2 1<3 4<6 5<7 8>10 9>11 12>14 13>15 2 4 4
2 2 0<1 2<3 4<5 6<7 8>9 10>11 12>13 14>15 1 2 4
3 0 0<8 1<9 2<10 3<11 4<12 5<13 6<14 7<15 8 16 8
3 1 0<4 1<5 2<6 3<7 8<12 9<13 10<14 11<15 4 8 8
3 2 0<2 1<3 4<6 5<7 8<10 9<11 12<14 13<15 2 4 8
3 3 0<1 2<3 4<5 6<7 8<9 10<11 12<13 14<15 1 2 8

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

4 of 4 Bitonic Sort

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

BlockWidth = 2*2(Stage – PassOfStage)
A block is a group of consecutive elements in the array that are being compared.
The width of the block is defined by BlockWidth.

SameDirectionBlockSize = 2stage
This is the number of comparisons in a stage that are monotonically increasing or
monotonically decreasing. For instance, in Stage 2 the first four comparisons are
increasing comparisons; the next four are decreasing comparisons. Thus, the
SameDirectionBlockSize is 4 for stage 2.

Leftid = (threadId % pairDistance) + (threadId / pairDistance) * blockwidth
Rightid = Leftid + pariwisedist

Leftid and Rightid are the indices of the numbers to be compared in the invocation
of the work thread. The smaller of the two indices in the array is the LeftId; the larger
one is the RightId. The number at LeftId is always to the left of the number at RightId
in the array.

In our implementation, thread 0 compares the element at index 0 to the corresponding index on
its right. The right element is chosen based on pairDistance for that stage and pass. Thread 1
takes the first element that thread 0 does not handle, and uses it as Leftid. As before, Rightid is
computed from Leftid. Continuing this pattern, one can see that thread K takes the first element
not covered by threads 0 to K-1, and uses it as Leftid. The equations and the table above help
show how Leftid can be derived from threadid.

Once a thread has Leftid, Rightid, and sortDirection, it can compare (and swap, if necessary) and
write to the same locations.

4 References
1. http://facultyfp.salisbury.edu/taanastasio/COSC490/Fall03/Lectures/Sorting/bitonic.pdf

Explanation of Bitonic sort with examples by Thomas Anasosio.

2. http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Bitonic Sort
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details
	3.1 Stages
	3.2 Detailing One Pass
	Table 2 Bitonic Sort Stages, Passes, and Comparisons

	4 References

