
Basic Debugging 1 of 11

SAMPLE

Basic Debugging

1 Introduction
This is a stand-alone OpenCL sample for the novice programmer. It is a sample that
demonstrates the basic OpenCL debugging techniques:

1. How to use KernelAnalyzer for debugging kernel compilation errors.

2. How to use printf inside a kernel.

3. How to use CodeXL to debug API errors or kernel functions.

2 AMD APP KernelAnalyzer

2.1 Overview

The AMD APP KernelAnalyzer is an OpenCL kernel code analysis tool for GPU applications. It
contains an OpenCL compiler, a text editor, an assembly code window, and a statistics viewer.

2.2 Getting Started

The following steps describe how to check for kernel compile-time errors.

1. Run AMD APP KernelAnalyzer.

2. Open the OpenCL source file.
This example uses BasicDebug_Kernel2.cl.

2 of 11 Basic Debugging

3. Select “Build” from the Build menu to compile the OpenCL kernels.

4. The compiler output is shown in the Output window. This is useful for debugging compilation
errors.

5. If the compilation is successful, the ISA codes of the targeted GPU will be shown in the
assembly window.

Basic Debugging 3 of 11

6. The Statistics tab shows some statistical information of a kernel on a particular GPU. Moving
the mouse over a table header shows a tool tip explaining the meaning of data in that column.

3 Using printf Inside a Kernel
The built-in printf function writes output to an implementation-defined stream, such as stdout,
under control of the string pointed to by a format that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess arguments are evaluated, but
otherwise ignored. The printf function returns when the end of the format string is encountered.

The following steps are a guide to using the printf function.

1. Function prototype : int printf(constant char * restrict format, …)

2. printf output synchronization:

Calling clFinish on a command queue flushes all pending output by printf in previously
enqueued and completed commands to the implementation-defined output stream. In case
printf is executed from multiple work-items concurrently, there is no guarantee of ordering
with respect to written data.

4 of 11 Basic Debugging

3. Differences between the C and the OCL version of printf.

a. Since format is in the constant address space, it must be resolvable at compile time;
thus, it cannot be dynamically created by the executing program.

b. OpenCL C adds the optional vn vector specifier to support printing of vector types.

c. In OpenCL C, printf returns 0 if it was executed successfully; otherwise, it returns 1.

4. More information can be found in section 6.12.13) of The OpenCL Specification, v 1.2.

4 Implementation Details
This sample shows how to use the function printf in an OpenCL kernel to export some
information for debug purposes.

4.1 Kernel Code
__kernel void printfKernel(__global float *inputbuffer)
{

uint globalID = get_global_id(0);
uint groupID = get_group_id(0);
uint localID = get_local_id(0);
if(10 == globalID)

{
float4 f = (float4)(inputbuffer[0], inputbuffer[1], inputbuffer[2],

inputbuffer[3]);
printf("Output vector data: f4 = %2.2v4hlf\n", f);

}
__local int data[256];
data[localID] = localID;
barrier(CLK_LOCAL_MEM_FENCE);
if(0 == localID)
{

printf("\tThis is group %d\n",groupID);
printf("\tOutput LDS data: %d\n",data[0]);

}
printf("the global ID of this thread is : %d\n",globalID);

}

4.2 Code Interpretation
1. Get global ID, local ID and group ID of every thread:

uint globalID = get_global_id(0);
uint groupID = get_group_id(0);
uint localID = get_local_id(0);

2. When debugging the kernel, define temporary variables and do some calculations; then,
output some information for a specific thread (use vector type here):

if(10 == globalID)
{

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
printf("f4 = %2.2v4hlf\n", f);
}

Basic Debugging 5 of 11

The meaning of format string 2.2v4hlf is:

V4 – Specifies that the f conversion specifier applies to a vector argument.
Since the vector type is float4, use v4 here.

hl – Specifies that the f conversion specifier applies to a float4 argument.

3. Sometimes we use local memory in the kernel. When debugging the kernel, output some
local memory information for a specific thread:

if(0 == localID)
{
printf("\tThis is group %d\n",groupID);
printf("\tOutput LDS data: %d\n",data[0]);
}

4. To know the calculation process or calculate the sequence of the threads, output some
information according to the global ID (globalID is private value here).

printf("the global ID of this thread is : %d\n",globalID.

5 Using CodeXL to Debug API Errors or Kernel Functions
CodeXL is an OpenCL and OpenGL debugger. It brings together the GPU and CPU compute
tools to enable faster and more robust development of OpenCL and OpenGL accelerated
applications, specifically for Heterogeneous Compute application development and APUs.

CodeXL will be available in three versions:

1. Plug-in to Microsoft® Visual Studio®.

2. Stand-alone software package for the Windows platform.

3. Stand-alone software package for Linux environments.

The AMD website for more information is:
http://developer.amd.com/tools/hc/CodeXL/pages/default.aspx

To use CodeXL:

1. Install AMD CodeXL.

2. On the CodeXL Home Page. Select "Create a New Project" to bring up the New Project
Wizard.

6 of 11 Basic Debugging

3. Host OpenCL API debugging:

a. The Breakpoint dialog lets you choose OpenCL and OpenGL API function breakpoints,
as well as kernel function name breakpoints.

b. Add an API Functions breakpoint.

Basic Debugging 7 of 11

c. Continue to run the program. It will stop at the breakpoint

8 of 11 Basic Debugging

d. The Function Calls History” window shows a history of the API calls and the parameters:

e. CodeXL Explorer. Expand the Context tree showing the buffers, queues, programs, and
kernels created in that context.

Basic Debugging 9 of 11

4. Kernel debugging.

a. After building the OpenCL program, set a breakpoint in the kernel.

b. Continue to run the program until it stops inside the kernel.

c. Track the value of the variables with the “Watch” window. First watch for work item 0.

10 of 11 Basic Debugging

d. Use the work-item tool to switch to item 1. The variables in the watch window are
updated in real-time.

e. See the value of globalID of every thread. Check this with the “OpenCL Multi-Watch”
window.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

11 of 11 Basic Debugging

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Basic Debugging
	1 Introduction
	2 AMD APP KernelAnalyzer
	2.1 Overview
	2.2 Getting Started

	3 Using printf Inside a Kernel
	4 Implementation Details
	4.1 Kernel Code
	4.2 Code Interpretation

	5 Using CodeXL to Debug API Errors or Kernel Functions

