AMD Accelerated
Parallel Processing

SAMPLE

TECHNOLOGY .
Box Blur-Filter
1 Overview
1.1 Location ¢ (AMDAPPSDKSAMPLESROOT) \samples\opencl\cl\app
1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.
Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $ (AMDAPPSDKSAMPLESROOT) \samples\opencl\bin\x86\ for
32-bit builds, and $ (AMDAPPSDKSAMPLESROOT) \samples\opencl\bin\x86 64\ for 64-bit builds.
Type the following command(s).
1. BoxFilter
This applies a box blur filter on the input image.
2. BoxFilter -h
This prints the help file.
1.3 Command Table 1 lists, and briefly describes, the command line options.
Line Options

Table 1 Command Line Options
Short Form Long Form Description
-h --help Shows all command options and their respective meaning.
--device Devices on which the program is to be run. Acceptable values are
cpu Or gpu.
-q --quiet Quiet mode. Suppresses all text output.
-e --verify Verify results against reference implementation.
-t --timing Print timing.
- -dump Dump binary image for all devices.
--load Load binary image and execute on device.
--flags Specify compiler flags to build the kernel.
-p --platformId Select platformld to be used (0 to N-1, where N is the number of
available platforms).
-d --deviceId Select deviceld to be used (0 to N-1, where N is the number of
available devices).
-v --version AMD APP SDK version string.
-1 --iterations Number of iterations for kernel execution.
-x --width Filter width.

Box Blur-Filter

10of4



2 Introduction

Box filtering, also known as average or mean filtering, is a method of reducing the intensity
variation between pixels in an image, and is a commonly used technique to reduce noise.

3 Implementation Details

Two versions of Box filter have been implemented —

1. BoxFilter separable

2. BoxFilter with precomputed summed area tables

3.1 BoxFilter Separable
Filtering an M-by-N image with a P-by-Q filter kernel requires roughly MNPQ multiplies and adds.

If the kernel is separable, you can filter in two steps. The first step requires about MNP multiplies
and adds. The second requires about MNQ multiplies and adds, for a total of MN(P + Q).

Implementation consists of applying the filter horizontally, then vertically.

Figure 1 compares the performance between a naive and a separable BoxFilter.

200
180
160 /
140
120 /
100 / = SimpleBox
20 / SeparableBox
60 /
40
20 _.../ e
0] T T T 1
3x3 5x5 9x9 19x19

Figure 1 Time Taken (in msec) vs Filter Size on an ATlI Radeon™ HD 4870 GPU

Loop unrolling optimization results in approximately 10% to 20% improvement, depending on the
specified filter width. This means approximatelhy 180 fps for a 1024 x 1024 image (filter size 9x9)
on an ATl Radeon™ HD 5770 with GL interoperability.

The flag for using hardware local memory in the horizontal pass of the separable filter has been
commented out due to performance decrease.

2of 4 Box Blur-Filter




3.2 BoxFilter with SAT

Summed-area tables (SATs) were introduced by Crow (see reference [1]) to accelerate texture
filtering. Each element in a SAT is the sum of all texture elements in the rectangle above and to
the left of the element (see Figure 2).

Figure 2 Sample Data and Corresponding SAT

The sum of any rectangular region then can be determined in constant time using:
S =t [Xmax: Ymax] = t Xmaxs Ymin] = t Xmin: Ymax] * t Xmins Yminl

It is easy to compute the average over this region by dividing by the number of pixels in the
region.

SATs let us sample arbitrary rectangular regions, which is sufficient for applying a box filter of any
size on an image.

3.3 Computing SAT

Computing a SAT is done in two passes.

1. Horizontal pass — the prefix sum is applied on each row separately.

2. Vertical pass — the prefix sum is applied on column separately.

After computing a SAT, a final BoxFilter kernel requires fetching only four values from a global
buffer to compute the final filtered image.

This technique is very fast for interactive applications because, after applying the precomputation,
it is possible to change the filter size immediately without degrading performance. For example,
a 1024 x 1024 image gives us about 250 fps using GL interoperability on the ATl Radeon™ HD
5770, irrespective of box filter size.

Note that the value of the sums (and, thus, the dynamic range) can become very large; the table
entries require extended precision. The number of bits of precision needed per component is
calculated using:

Box Blur-Filter 30of4



Ps = logy (w) + logy (h) + P;

where: w and h are the width and height, respectively, of the input image.
P is the precision required to hold values in the SAT.
P; is the number of bits of precision of the input.

Given this, a 256 x 256 texture with eight-bit components requires a SAT with 24 bits of storage
per component. Thus, we use 32-bit per pixel image data (12 + 12 + 8 = 32) for the calculation
of the SAT. This can maximally process a 4096 x 4096 image.

4 References

1. Crow, Franklin (1984). "Summed-area tables for texture mapping". SIGGRAPH '84:
Proceedings of the 11th annual conference on Computer graphics and interactive techniques,

pp. 207-212.
Contact Advanced Micro Devices, Inc. For AMD Accelerated Parallel Processing:
One AMD Place URL: developer.amd.com/appsdk
P.O. Box 3453 Developing: developer.amd.com/
Sunnyvale, CA, 94088-3453 Support: developer.amd.com/appsdksupport
Phone: +1.408.749.4000 Forum: developer.amd.com/openciforum
The contents of this document are provided in connection with Advanced AMD’s products are not designed, intended, authorized or warranted for use as
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or components in systems intended for surgical implant into the body, or in other

warranties with respect to the accuracy or completeness of the contents of applications intended to support or sustain life, or in any other application in
this publication and reserves the right to make changes to specifications and which the failure of AMD’s product could create a situation where personal injury,

product descriptions at any time without notice. The information contained death, or severe property or environmental damage may occur. AMD reserves
herein may be of a preliminary or advance nature and is subject to change the right to discontinue or make changes to its products at any time without
without notice. No license, whether express, implied, arising by estoppel or notice.

otherwise, to any intellectual property rights is granted by this publication. Copyright and Trademarks

Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD © 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
assumes no liability whatsoever, and disclaims any express or implied war- logo, ATI, the ATl logo, Radeon, FireStream, and combinations thereof are trade-
ranty, relating to its products including, but not limited to, the implied war- marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
ranty of merchantability, fitness for a particular purpose, or infringement of marks of Apple Inc. used by permission by Khronos. Other names are for infor-
any intellectual property right. mational purposes only and may be trademarks of their respective owners.

4 of 4 Box Blur-Filter


http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Box Blur-Filter
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details
	3.1 BoxFilter Separable
	Figure 1 Time Taken (in msec) vs Filter Size on an ATI Radeon‰ HD 4870 GPU

	3.2 BoxFilter with SAT
	Figure 2 Sample Data and Corresponding SAT

	3.3 Computing SAT

	4 References


