
Box Blur-Filter with GL Interoperability 1 of 4

SAMPLE

Box Blur-Filter with GL Interoperability

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. BoxFilterGL
This applies a box blur filter on the input image.

2. BoxFilterGL -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build the kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of
available platforms).

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-v --version AMD APP SDK version string.

-i --iterations Number of iterations for kernel execution.

-x --width Filter width.

-sep --separable Flag for separable version.

-sat --sat Flag for SAT version.

2 of 4 Box Blur-Filter with GL Interoperability

2 Introduction
Box filtering, also known as average or mean filtering, is a method of reducing the intensity
variation between pixels in an image, and is a commonly used technique to reduce noise.

3 Implementation Details
Two versions of Box filter have been implemented –

1. BoxFilter separable

2. BoxFilter with precomputed summed area tables

3.1 BoxFilter Separable

Filtering an M-by-N image with a P-by-Q filter kernel requires roughly MNPQ multiplies and adds.

If the kernel is separable, you can filter in two steps. The first step requires about MNP multiplies
and adds. The second requires about MNQ multiplies and adds, for a total of MN(P + Q).

Implementation consists of applying the filter horizontally, then vertically.

Figure 1 compares the performance between a naïve and a separable BoxFilter.

Figure 1 Time Taken (in msec) vs Filter Size on an ATI Radeon™ HD 4870 GPU

Loop unrolling optimization results in approximately 10% to 20% improvement, depending on the
specified filter width. This means approximatelhy 180 fps for a 1024 x 1024 image (filter size 9x9)
on an ATI Radeon™ HD 5770 with GL interoperability.

The flag for using hardware local memory in the horizontal pass of the separable filter has been
commented out due to performance decrease.

Box Blur-Filter with GL Interoperability 3 of 4

3.2 BoxFilter with SAT

Summed-area tables (SATs) were introduced by Crow (see reference [1]) to accelerate texture
filtering. Each element in a SAT is the sum of all texture elements in the rectangle above and to
the left of the element (see Figure 2).

Figure 2 Sample Data and Corresponding SAT

The sum of any rectangular region then can be determined in constant time using:

It is easy to compute the average over this region by dividing by the number of pixels in the
region.

SATs let us sample arbitrary rectangular regions, which is sufficient for applying a box filter of any
size on an image.

3.3 Computing SAT

Computing a SAT is done in two passes.

1. Horizontal pass – the prefix sum is applied on each row separately.

2. Vertical pass – the prefix sum is applied on column separately.

After computing a SAT, a final BoxFilter kernel requires fetching only four values from a global
buffer to compute the final filtered image.

This technique is very fast for interactive applications because, after applying the precomputation,
it is possible to change the filter size immediately without degrading performance. For example,
a 1024 x 1024 image gives us about 250 fps using GL interoperability on the ATI Radeon™ HD
5770, irrespective of box filter size.

Note that the value of the sums (and, thus, the dynamic range) can become very large; the table
entries require extended precision. The number of bits of precision needed per component is
calculated using:

s = t [xmax, ymax] - t [xmax, ymin] - t [xmin, ymax] + t [xmin, ymin]

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

4 of 4 Box Blur-Filter with GL Interoperability

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

Ps = log2 (w) + log2 (h) + Pi

where: w and h are the width and height, respectively, of the input image.
Ps is the precision required to hold values in the SAT.

Pi is the number of bits of precision of the input.

Given this, a 256 x 256 texture with eight-bit components requires a SAT with 24 bits of storage
per component. Thus, we use 32-bit per pixel image data (12 + 12 + 8 = 32) for the calculation
of the SAT. This can maximally process a 4096 x 4096 image.

4 References
1. Crow, Franklin (1984). "Summed-area tables for texture mapping". SIGGRAPH '84:

Proceedings of the 11th annual conference on Computer graphics and interactive techniques,
pp. 207–212.

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Box Blur-Filter with GL Interoperability
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details
	3.1 BoxFilter Separable
	Figure 1 Time Taken (in msec) vs Filter Size on an ATI Radeon‰ HD 4870 GPU

	3.2 BoxFilter with SAT
	Figure 2 Sample Data and Corresponding SAT

	3.3 Computing SAT

	4 References

