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1 Introduction

1.1 DeepCore

Motivation In order to extend the lowest energy threshold of the IceCube
detector below about 100 GeV, new strings of high quantum efficiency DOMs
have been added to the nominal IceCube-80 (IC80) array. These new strings
were deployed in the bottom-center of the detector volume; a region referred
to as DeepCore. The DeepCore region is more densely instrumented, in-
creasing the probability that lower energy events will satisfy detector trigger
conditions. This new spatial construction also allows the IC80 strings and
DOMs to act as an active veto volume for DeepCore. In doing so, the de-
tector can be used to focus on topics such as dark matter searches, neutrino
oscillations, and southern hemisphere point source searches.

Geometry The new strings being deployed are numbered 81 through 86
in the base geometry text file used as input to the IceSim Monte Carlo
package. The DOMs are divided, as indicated as indicated in Table [I] below,
to make up the two separate regions. There is no overlap or sharing of DOMs
between IceCube (the veto region) and DeepCore in this definition; the sets
are mutually exclusive.



String Numbers DOM Numbers

IceCube, Veto Region | DeepCore
81-86 1-10 11-60
26-27, 35-37, 45-46 1-37 38-60
1-25, 28-34, 38-44, A7-78 1-60

Table 1: Allocation of DOMs into IceCube and DeepCore fiducial Volumes

DeepCore is centered around current string number 36 which is located
at (z,y) coordinates (45.98 m, —34.539 m) with a radius of about 125 m.
Vertically, DeepCore will cover the range —503 m < z < 100 m. Above the
dust layer we have a DOM spacing of 10 m instead of 7 m, with the gap at
the dust layer which is not instrumented at all. The additions to the detector
will be deployed as pictured in Fig. 1. A side view of the final geometry is
shown in Fig. 2. A simpler, but less acurate representation can be seen in
Fig. 3, which also illustrates how signal and background events are defined for
DeepCore: events whose interaction vertices (starting points) are in the de-
fined DeepCore region or below the entirety of IceCube are considered signal
for that fiducial volume, while all other events are considered background.

1.2 Background Concerns

Atmospheric muons represent the dominant background for low energy
analyses in IceCube. Estimates from CORSIKA simulation have shown an
expected rate of atmospheric muons of 107 per hour. This is compared to an
expected signal rate for muon neutrino events (triggering only the fiducial
volume) of approximately 10 per hour. Thus, the ability to achieve a rejection
level of 107 or better against atmospheric muons would yield a signal-to-noise
ratio of better than 10:1, making analyses at the lowest energies possible.

1.3 Veto Algorithm Goals

In designing such a rejection (or veto) algorithm to run online, the goal is
to achieve background elimination to satisfy satellite bandwidth constraints
while maintaining the highest possible signal efficiency. This will be done
by discarding those events that do not appear to have interaction verticies
within the DeepCore volume and keeping those that do. A computationally
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Figure 1: A schematic layout of IceCube DeepCore. The upper diagram
shows a top view of the string positions in relation to existing AMANDA and
current/future IceCube strings. It includes two additional strings, situated
close to the central DeepCore string, that are planned for deployment in
the 2010/2011 austral summer. The lower diagram shows the instrumented
DeepCore region (highlighted in red and green) with the surrounding IceCube
strings. On the left is a dust concentration curve which is related to the
effective scattering length for Cherenkov photons in the ice. The curve is
from data down to 2100 m depth, and an extrapolation thereafter and then
extrapolation thereafter because the ice below 2100 m becomes too clear for
the device that made the measurements.

innocuous algorithm of this type will be applied at the pole as a level zero
filter. Rejection of the final order of magnitude or so of background will
naturally come at some expense in signal efficiency and will be accomplished
using sophisticated, time-consuming algorithms run offline in the north.



2 The Algorithm

2.1 Overview

The veto algorithm is applied through the use of timing, charge, and
position information for all the Hard Local Coincidence (HLC) DOM hits
in an event. If an event causes hits in both DeepCore and IceCube (i.e., in
the veto region), then veto region hits are compared to those in DeepCore,
searching for a correlation. Location and timing information from the hits
are used to search for a coincidence within a certain time window which is
centered around light travel time ¢ = d/c between hits in the veto region and
those in the fiducial region (d is defined below). If such a correlation is found
then the event in question is discarded. By default, events that do not cause
hits in DeepCore DOMs at all are discarded while those that produce hits in
only DeepCore DOMs are kept.

2.2 General Process

The module first checks if the event produced any hits in DeepCore,
a process which will be executed by the DeepCore trigger module. If an
event does not cause DeepCore hits, then it is discarded. Otherwise, the
algorithm focuses first on the DeepCore fiducial hits, and calculates the mean
and standard deviation of the timing distribution for all DeepCore hits (See
Appendix [B.I). From this distribution, hits that fall within one standard
deviation of the mean are used to determine the DeepCore center of gravity
(COQG) for the event. The timing of each of these DOMs is used to calculate
a time for the COG, corrected for the COG-DOM distance and the speed
of light in the ice. Appendix [B.2 details both of these calculations and the
specific formulae are repeated below in equations [Il and 2 using the option
of weighting the hits by charge.The filter that is run at the Pole does NOT
weight the hits by charge, but the mechanics to do so are included in the filter
module. For completeness the equations shown here include charge weighted
hits.

For a set of DeepCore hits with position vectors < x;,y;, z; > and charge



deposited ¢;, the COG position vector has the components

X = Zn ’ Y = Zn ) Z = Zn (1)

If each DeepCore hit also has a hit time given by ¢; and the speed of light
in ice is given by ¢;.. then the weighted time for the COG is

= (zi—X)?+(yi—Y)*+(2i—2)?
27,: |(tl B \/ Z:ice )|

Weighted COG Time = Ty, — (2)
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Then each individual veto region hit is examined and a representative
velocity (or “particle” speed) is calculated. This is the velocity that an imag-
inary particle would need to have in order to satisfy the difference between
position and timing between the specific veto region hit and the calculated
COG as shown in Eq. Bl below.

Vi@ = X2+ (4 = V) + (2 — 2)?
Tcog - tz (3)

Within the particle speed distribution a pre-determined “veto window”
is defined. This window, which is used as a cut on the data, is based loosely
on the speed of light in vacuum that an energetic muon would possess in the
detector, such as those from atmospheric backgrounds. (This window used
was not computed through any formulae but rather determined via trial-
and-error.) If greater than n veto region hits produce a particle speed that
falls within this window then the entire event is vetoed (See Appendix [B.4]).
Note that n should generally be very low for contained signal events, n < 1.
If there are not enough coincident hits found after analyzing all veto region
hits, then the event is not vetoed.

In the end, information about the veto, center of gravity, and other cal-
culated values may be output by the module to a ROOT file before moving
to the next event, if the user specifies to do so in the parameters.

Particle speed =



2.3 Further Notes

The particle speed is constructed so that hits occuring before the Deep-
Core center of gravity hit will have positive speed, while those with a later
timing will have negative speeds. In this way, the window can differentiate
between those two situations. Also note that even though the particles obvi-
ously do not travel faster than the speed of light in vacuum (0.3 m/ns) the
windows used in the veto go beyond that range. This is done to allow for
PMT jitter or low resolution in the DeepCore COG calculation.

Additionally, this module was built to operate within the IceRec V02-
01-01 release and code reviewed and included in IceRec V03-02-00. Source
code hierarchy, configurable parameters and other methods of controlling the
algorithm are detailed in Appendix [A1] [A-2] and [A.3] respectively.

3 Results

3.1 Veto Power

Table 2l below details a selection of statistical results obtained by running
various test files through the veto, using Hard Local Coincidence (HLC).
Note that for corsika data, the result given is in:

number of events kept

total number of events

while for the signal data, results are given in:

number of events kept

total number of events with interaction vertecies in DC

3.2 DeepCore Center of Gravity Calculation

The graphs presented in Figs. 4-6 represent the frequency distribution of
the shortest distance between the calculated COG and either the interaction
vertex or the track of the particle, as determined from the Monte Carlo (MC)
truth information.
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Table 2: Effectiveness of algorithm on the three data types when using dif-

ferent veto windows.
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3.3 Typical Speed Distribution for Veto Region Hit to
Center of Gravity Position

The following graphs show the speed calculated by dividing distance be-
tween a veto region hit and the CoG by the time difference between those
points. For each data type, the particle speed distribution of an example
event is given, including vetoed and non-vetoed events. The various possible
veto windows (specifically the two possibilities detailed in Table [2)) apply to
these graphs.



Data Example Vetoed Event Example NonVetoed Event
(e (i Cas s g IceCube Hit to CoG Speed for
Vetoed Gorsika Event 13644 Non-Vetoed Corsika Event 3356
Corsika
IceCube Hit ta CoG Speed for IceCube Hit to CoG Speed for
Vetoed NuE Event 54 Non-Vetoed NuE Event 79
NuE
IceCube Hit to CoG Speed for lceCube Hit to CoG Speed for
Vetoed NuMu Event 698 Non-Vetoed NuMu Event 512
NuMu

4 Conclusions and Future Direction

Used with Hard Local Coincidence, and a 0.25-0.40 m/ns speed window
allowing one hit, this veto algorithm can reduce the background by a factor of
1.7x 103, while preserving over 97% of the signal. As such, it could effectively



be deployed at the pole as a level-zero pass filter that would consume little
bandwith. Later, higher-level analyses of the data should be able to further
reduce the background to attain the final desired 107 background rejection
factor.

The use of HLC with this module does limit the amount of information
(hits) available for the veto to analyze, thus limiting its potential as com-
pared to a usage with Soft Local Coincidence. In developing this algorithm,
however, working with SLC allowed far too much noise into the data. Basic
attempts to reduce noise by increasing n, the number of hits allowed in the
veto window, helped somewhat but could not approach the noise reduction
necessary for an effective veto and so HLC was used instead.

Although the module utilizes the events after HLC, an application to SLC
data has not been refined. The use of SLC has the potential to greatly in-
crease the effectiveness of the algorithm and so there are plans to explore this
with topological additions. Further attempts to eliminate the noise inhibiting
the exploitation of a SLC analysis could hopefully open new levels of effiency
in both the vetoing power and the signal preservation of this algorithm.
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A Technical Implementation

A.1 Source Code Hierarchy

DeepCoreVeto

‘Cl\/IakcLists,txt ‘ resources ‘ ‘ LinkDef.h ‘ ‘ public

‘ private

DeepCoreVeto

DeepCoreVeto

‘ISDeepCoreFitter.oxx

‘ I3DeepCoreVeto.cxx

‘ISDeepCoreFitter.h

‘ I3DeepCoreVeto.h

‘ I3DeepCoreHits.h

Note: I3DeepCoreFitter.cxx contains all of the individual functions, while
[3DeepCoreVeto.cxx calls these functions and organizes their overall process
in Physics(). I3DeepCoreHit.h defines a struct used in the other files to hold
DOM hit information.

A.2 Parameters

This module has a total of nine configurable parameters, as defined in
[3DeepCoreVeto.cxx. They are:

1. I3MCTreeName, a string containing the name of the monte carlo tree
to get from the frame. Takes a string.

2. InputDeepCoreRecoHitSeries, a string containing the name of the hit
series which includes reco hits only for the event’s Deep Core DOMs.

3. InputDeepCoreRecoPulseSeries, a string containing the name of the
pulse series information for the same set of DOMs as above.

4. InputlceCubeRecoHitSeries, a string containing the name of the hit
series which includes reco hits for all DOMs except those in DeepCore.

5. InputlceCubeRecoPulseSeries, as above, a string containing the name
of the pulse series that contains information for all DOMs outside of
DeepCore.

11



6. DecisionName, a string containing the name given to the boolean pushed
to the frame which holds information about how many events were /were
not vetoed.

7. RecordNonDCEvents, a bool asking if you would like to record into
the decision any information about events that did NOT trigger any
DeepCore DOMs (True = yes).

8. RecordVetoedDCEvents, a bool asking if you would like to record into
the decision any information about events that triggered Deep Core
but were subsequently vetoed due to coincident hits. (True = yes).

9. RecordKeptDCEvents, a bool asking if you would like to record to the
frame any information about the decision and other calcultated values
for events that triggered DeepCore but did not have enough (or any)
coincident hits to be discarded. (True = yes).

Note: InputDeepCoreRecoHitSeries and InputlceCubeRecoHitSeries should
not have any overlapping DOM information; they should define the DOMs
as describe earlier in[Il The same applies to the respective pulse series.

A.3 Further Module Controls

Other aspects of the algorithm may also be easily fine-tuned.

e The veto window of values associated with particle speed distribution
used to determine if an icecube hit is coincident with DeepCore or
not. Possible options, as determined from optimization studies utiliz-
ing signal and corsika MC include 0.25-0.40 or 0.25-0.45 meters per
nanosecond, inclusive.

e The number of icecube hits to allow to fall in this window, before
vetoing an event.
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B Coding

B.1 Computing the mean and standard deviation of
an event’s DeepCore hit times

//
// iterator: selector
// Record and average the DeepCore hit times.
//
double sumDCTime 0.0;
double avgDCTime 0.0;
I3RecoPulseSeriesMap: :const_iterator selector;
for(selector=hitmap->begin(); selector!=hitmap->end(); selector++)
{
const I3RecoPulseSeries& hits = selector->second;
// make sure the pulse series is not empty
if ('hits.size()) log_error("DeepCore pulse series is empty!");

// only use first pulse for hit time
const I3RecoPulse& pulse = hits.front();
I3DeepCoreHit hit;

hit.hitTime_ = pulse.GetTime();

// Check for Nan and INF in the timing
if ( isnan(hit.hitTime_)==1 || isinf(hit.hitTime_)==1 )
{
// Don’t Add the hit to the list
log_info("DEEPCORE: Got Nan or INF for hit Time! not recording
this hit");
continue;
}
// If info exists correctly...
else
{
sumDCTime += pulse.GetTime();
deepCoreHits_->push_back(hit);
log_debug("Got time %f ",hit.hitTime_);
}
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} // end for loop - selector.

// Calculate the mean time
double numDCHits = GetNumDeepCoreHits();
avgDCTime = sumDCTime / numDCHits;

//

// iterator: iterl

// Calculate the standard deviation for the distribution of

// DeepCore hit times.

//

double sum_delta_squared = 0.0;

double std_deviation = 0.0;

I3DeepCoreHitSeries: :const_iterator iterl;

for(iterl = deepCoreHits_->begin(); iterl != deepCoreHits_->end();

iterl++)
{
const I3DeepCoreHit& hit = *iterl;
double hitTime = hit.hitTime_;
sum_delta_squared += ( (hitTime - avgDCTime)*
(hitTime - avgDCTime) );
}

std_deviation = sqrt( sum_delta_squared / (numDCHits-1) );

B.2 Calculating the DeepCore center of gravity and
associated time

//

// iter2

// Calculate the center of gravity

//

double sumWeights = 0.0;

double charge = 0.0;

double sumX = 0.0; double sumY = 0.0; double sumZ = 0.0;

unsigned calccoghitNum = O;

I3DeepCoreHitSeries: :const_iterator iter2;

for(iter2 = deepCoreHits_->begin(); iter2 != deepCoreHits_->end();
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iter2++)
const I3DeepCoreHit& hit = *iter2;

// Get the charge of this hit and use it to find the COG weight
charge = hit.charge_;
double weight = CalcCogWeight (charge);

// Sum the weighted positions
sumX += weight * hit.hitX_;
sumY += weight * hit.hitY_;
sumZ += weight * hit.hitZ_;
sumWeights += weight;
calccoghitNum++;

log_trace("x = %.3f, y = %.3f, z = %.3f, t = %.3f, hitnum: %d",
hit.hitX_, hit.hitY_, hit.hitZ_, hit.hitTime_, calccoghitNum);
} // for each hit

// Check that there are hits and that the sum of their weights is nonzero...
if (calccoghitNum == 0 || sumWeights == 0.0)
{
log_error ("Number of hits=)d, sumWeights=}1f",
calccoghitNum, sumWeights);
return false;

else

{
// Calculate the Center of Gravity
double cogX = (sumX / sumWeights);
double cogY = (sumY / sumWeights);
double cogZ = (sumZ / sumWeights);

//
// iter3
// Calculate the average time associated with the COG

//
double dX = 0.0; double dY = 0.0; double dZ = 0.0;
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double dist 0.0;

double sumT 0.0;

unsigned calctimehitNum = O;

I3DeepCoreHitSeries: :const_iterator iter3;

for(iter3 = deepCoreHits_->begin(); iter3 != deepCoreHits_->end();
iter3++)

const I3DeepCoreHit& hitl = *iter3;

// Trace each hit back to the COG

dX = hitl.hitX_ - cogX;
dY = hitl.hitY_ - cogY;
dZ = hitl.hitZ_ - cogZ;

dist = Sqrt(dX*dX + dY*dY + dZx*dZ);

// Sum the corrected times

sumT += abs( (hitl.hitTime_-(dist /
(I3Constants::c/I3Constants::n_ice))) );

calctimehitNum++;

log_trace("dX=%lf, dY=}lf, dZ=1f, sumT=),1f, hit# %d",
dX,dY,dZ,sumT,calctimehitNum) ;
// Set the Mean Corrected Time

vertexTime = (sumT / calccoghitNum);

// Set the center of gravity
CoG.SetPosition(cogX, cogY, cogZ);

B.3 Calculating the distance / time difference

/* In a loop over all IceCube hits... */

// Create an I3Position to hold the current icecube hit
I3Position HitPos(icecube_hitX, icecube_hitY, icecube_hitZ);

// Calculate the distance and time delay between the icecube
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//hit and the (previously calculated) deepcore Center of Gravity

distance = sqrt( (CoG.CalcDistance(HitPos))*
(CoG.CalcDistance(HitPos)) );

time_difference = (vertexTime - icecube_hitTime);

//

// Particle_speed represents the speed at which a particle

//  would have to travel to make it from the icecube hit to

// the calculated COG in the time difference between those ’hits’
// It is positive if the icecube hit occured before CoG time

// (vertexTime), negative if it occured after

//

particle_speed = (distance / time_difference);

B.4 Checking if distance / time difference is in the
veto window

/* Also in a loop over all IceCube hits... */

// Check if the particle speed for this icecube hit is
// in the veto window

nicecubeHits++;

InWindow(particle_speed, nVetoWindowHits);

// If the event has not been vetoed (discarded) yet, check the

// number of hits to allow in the veto window.

// If that limit has been exceeded, permanently discard the event
if (veto=true && nVetoWindowHits <= 1)

{
log_debug("Event not vetoed in I3DeepCoreFitter::Veto()");
veto = true;

}

else if (veto=true && nVetoWindowHits > 1)

{
log_debug("Event vetoed in I3DeepCoreFitter::Veto()");
veto = false;

}
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else // If the event is already discarded - if (veto==false)...
continue;
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