November 20, 2005

tree.hh documentation

Kasper Peeters

MPI/AEI fir Gravitationsphysik, Am Miihlenberg 1, 14476 Potsdam, Germany

k.peeters@damtp.cam.ac.uk

Abstract

The tree.hh library for C++ provides an STL-like container class for n-ary trees, templated
over the data stored at the nodes. Various types of iterators are provided (post-order, pre-order,
and others). Where possible the access methods are compatible with the STL or alternative
algorithms are available. The library is available under the terms of the GNU General Public
License.

Code and examples available at: http://www.damtp.cam.ac.uk/user/kp229/tree/

This documentation is not yet complete. Refer to the tree.hh header file for a full
list of member functions.

Table of Contents

1 Overview 2
1.1 The container class L L 2
1.2 Tterators e e e e e 3

2 Basic operations 3

3 Other algorithms 4
3.1 Non-mutating algorithms L 4
3.2 Mutating algorithms L Lo 4

1 Overview

1.1 The container class

The tree class of tree.hh is a templated container class in the spirit of the STL. It organises data
in the form of a so-called n-ary tree. This is a tree in which every node is connected to an arbitrary
number of child nodes. Nodes at the same level of the tree are called “siblings”, while nodes that are
below a given node are called its “children”. At the top of the tree, there is a set of nodes which are
characterised by the fact that they do not have any parents. The collection of these nodes is called
the “head” of the tree. See figure 1 for a pictorial illustration of this structure (90 degrees rotated
for convenience).

first child first child

head ——— > node > node
|
next sibling |
prev sibling |
node node
next sibling
prev sibling
last child
node
|
|
node

Figure 1: Overview of the tree structure. The elements at the top of the tree (here displayed at the
left for convenience) are in the “head” (there can be more than one such element). Every node is
linked to its children using the “first child” and “last child” links. In addition, all nodes on a given
level are doubly-linked using the “previous sibling” and “next sibling” links. The “depth” of a given
node refers to the horizontal distance from the head nodes.

The tree class is templated over the data objects stored at the nodes; just like you can have
a vector<string> you can now have a tree<string> Many STL algorithms work on this data
structure, and where necessary alternatives have been provided.

1.2 TIterators

The essential difference between a container with the structure of a tree and the STL containers is
that the latter are “linear”. While the STL containers thus only have essentially one way in which one
can iterate over their elements, this is not true for trees. The tree.hh library provides (at present)
four different iteration schemes. To describe them, consider the following tree:

root
A
T:B
C
D
T:E
F
The three iteration types and the resulting order in which nodes are visited are tabulated below:

pre-order (default) “element before children” pre_order_iterator root ABCDEF

post-order “element after children” post_order_iterator B C A E F D root
sibling “only siblings” sibling iterator (for ex.) A D
fixed-depth fixed depth_iterator (forex.) BCEF

The pre-order ones are the default iterators, and therefore also known under the name of iterator.
Sibling iterators and fixed-depth iterators iterate only over the nodes at a given depth of the tree. The
former restrict themselves to the child nodes of one given node, while the latter iterates over all child
nodes at the given depth. There are copy constructors that will convert iterators of the various types
into each other. The post- and pre-order iterators are both also known as “depth-first”. Breadth-first
iterators will be added at a later stage.

The begin and end iterators of a tree can be obtained using begin() and end() (for pre-order
iterators) or alternatively begin_post() and end_post() (for post-order iterators). Similarly, the
begin and end sibling iterators can be obtained by calling begin(iterator) and end(iterator).
The range of children of a given node can also be obtained directly from an iterator, by using the
iterator::begin() and iterator::end() member functions.

If you want to (temporarily) make an iterator not go into the child subtree, call the member
function skip_children. This will only keep effect for a single increment or decrement of the iterator.
Finally, whether or not an iterator is actually pointing at a node (i.e. is not an “end” iterator) can
be tested using the is_valid(iterator) member of the tree class.

2 Basic operations

Initialising There are two nontrivial constructors. One which takes a single node element as argu-
ment. It constructs a tree with this node begin the sole node in the head (in other words, it is a
combination of a trivial constructor together with a set_head call). The other non-trivial con-
structor takes an iterator, and copies the subtree starting at that node into the newly created
tree (useful for constructing new tree objects given by subtrees of existing trees).

Tree traversal Besides the operator++ and operator-- members for step-wise traversal through
the tree, it is also possible to use the operator+= and operator-= member functions to make
more than one step at the same time (though these are linear time, not amortized constant).
The result of stepping beyond the end of the tree or stepping beyond the end of a sibling range
(for sibling iterators) is undefined.

The parent of a given node can be reached by calling the parent member of the tree object,
giving it an iterator pointing to the node.

If you know the number of children of a given node, you can get direct access to the nth child
by using the child member function. Note that the value of the index is not checked and
should therefore always be valid.

Appending child nodes Nodes can be added as children of a given node using the append_child
member function.

Inserting nodes Nodes can be inserted at the same depth as a given other node using the insert
and insert_after members functions. This is also how you insert the first node into a tree.

3 Other algorithms

3.1 Non-mutating algorithms

Counting nodes The total number of nodes of a tree can be obtained using the size mem-
ber function, while the number of children of a given node can be obtained with a call to
number_of _children(iterator). Similarly, the number of nodes at a given depth (the number
of siblings of a given node) can be obtained using the number_of _siblings member function.

Determining depth The depth() member function returns the distance of a node to the root.
Accessing siblings by their index See the next item.

Determining index in a sibling range In order to determine the index of a node in the range
of siblings to which it belongs, use the index(sibling iterator) member function. The first
sibling node has index 0. The reverse of this function (obtaining a sibling node given its index
in the range of siblings) is called child(const iterator_base&, unsigned int).

Comparing trees While the STL equal algorithm can be used to compare the values of the
nodes in two different trees, it does not know about the structure of the tree. If you want
the comparison to take this into account, use the equal(iterator, iterator, iterator,
BinaryPredicate) call of the tree class. As an addition to the STL algorithm, the length of
the first range does not have to be equal to the length of the range pointed to by the second
iterator.

There is also an equal_subtree algorithm which takes only two iterators, pointing to the
(single-node) heads of two subtrees.
3.2 Mutating algorithms

Erasing nodes and subtrees In order to remove a node including its children from the tree, use
the erase(iterator) call. If you just want to erase the children, but not the node itself, use
the erase_children(iterator) call.

Replacing individual nodes or subtrees

Flattening subtrees The procedure of moving all children of a given node to be siblings of that
node is called “flattening”; it acts as

apple apple
banana banana
pear pear
Estrawberry - strawberry
cherry cherry
grape grape

when the tree is flattened at the “banana” node.

Moving or exchanging subtrees Simple exchange of one sibling node with the next one is done
through the member function swap(sibling iterator). The iterator remains valid and re-
mains pointing to the moved subtree.

More complicated move operations are the move_ontop, move_before and move_after ones.
These all take two iterators, a source and a target. The member move_ontop(target, source)
removes the ‘target’ node and all its children, and replaces it with the ‘source’ node and its
children. The ‘source’ subtree is removed from its original location. The other two move
members do a similar thing, differing only in the node which is to be replaced.

Extracting subtrees You can create a new tree object filled with the data of a subtree of the
original tree. This is analogous to the extraction of a substring of a string. The relevant
member function is subtree(sibling iterator, sibling iterator) which takes a range of
siblings as argument. There is also a slight variation of this member, which does not return a
tree object but instead populates one that is passed as an argument (useful if you want to call
this on a tree object subclassed from tree<T>.

Sorting The standard STL sort algorithm is not very useful for trees, because it only exchanges
values, not nodes. Applying it to a tree would mean that the structure of the tree remains
unmodified, only node values get moved around (not their subtrees).

Therefore, the tree class has its own sort member. It comes in two forms, just like the STL
sort, namely

void sort(sibling_iterator from, sibling_iterator to, bool deep=false);

template<class StrictWeakOrdering>
void sort(sibling_iterator from, sibling_iterator to,
StrictWeakOrdering comp, bool deep=false);

The result of a call to either of these is that the nodes in the range described by the two
iterators get sorted. If the boolean deep is true, the subtrees of all these nodes will get sorted
as well (and so one can sort the entire tree in one call). As in the STL, you can use the second
form of this function to pass your own comparison class.

If the nodes to which the two iterators point are not in the same sibling range (i.e. not at the

same depth in the tree), the result is undefined.

Merging One way in which one might think of indicating the position where new nodes are to be
inserted, is to give the path that leads to the insertion point. For instance, given the tree

apple
banana

pear
Estrawberry

cherry
grape

one could imagine using the sub-tree

apple
L_banana

r:coconut

raspberry

to indicate that the nodes “coconut” and “raspberry” are to be inserted as new children of the
“banana” node. In tree.hh this process is called tree merging. It can do the simple addition of

children as above, but actually handles the generic case too: as an example consider the merge

apple
banana

pear
merge strawberry |

cherry

grape
blueberry

apple
banana

r:co conut

raspberry

tangerine
L—plum

blueberry
L_orange

apple
—banana
pear
strawberry
cherry
coconut
raspberry
—grape
—tangerine
L_plum
blueberry
L _orange

As is clear from the above, the arguments to merge are two sibling ranges.

Index
append_child, 4

begin(), 3
begin(iterator), 3
begin_post(), 3

child, 4
child(const iterator_base&, unsigned int), 4

depth(), 4

end(), 3

end(iterator), 3

end _post(), 3

equal, 4

equal(iterator, iterator, iterator, BinaryPredi-
cate), 4

equal_subtree, 4

erase(iterator), 4

erase_children(iterator), 4

fixed_depth_iterator, 3

index(sibling_iterator), 4
insert, 4

insert_after, 4
is_valid(iterator), 3

merge, 6

move_after, 5

move_before, 5

move_ontop, 5
move_ontop(target, source), 5

number_of_children(iterator), 4
number_of _siblings, 4

operator++, 3
operator+=, 3
operator—, 3

operator-=, 3

parent, 3
post_order_iterator, 3
pre_order_iterator, 3

set_head, 3

sibling_iterator, 3

size, 4

skip_children, 3

subtree(sibling_iterator, sibling_iterator), 5
swap(sibling_iterator), 5

